China Professional Various Models Motorbike Parts, Motorcycle Gear Shift Shaft, Shifting Shaft hypoid bevel gear

Product Description

various models motorbike parts,motorcycle gear shift shaft,shifting shaft!
We can make with your samples and requirements!

Information
Model for various models 
Package LPI package
Trademark LPI
OEM/Not OEM OEM available

More motorcycle parts we can supply!

 

Motorcycle parts we can supply
Engine parts Cylinder head,Cylinder kit(Piston),Valve set,Arm rocker,Chain set(big sprocket,small sprocket,chain),Bearing,Clutch assy(clutch gear,clutch plates,clutch cover),Drive plate assy(weighing rollers,ace driven),Transmission assy( transmission belt,transmission,kick shaft,shift lever),Carburetor
Electrical parts Stator,Stater motor,Ignition coil,Rectifier,CDI,Lock set(lock,cap)
Frame parts Brake shoes,Brake disk,Barke pump assy,Fr&Re hub,Front hub iron,Rim,Brake pads,Rubber damper,Speedometer gear,Fuel cock,Speedometer,Turning light,Headlight,Tail light,Mirror,Fr&Re absorber,Horn,Cables(speedometer cable,throttle cable,brake cable),Battery,Battery
Body parts Oil tank,Side cover,Front&Rear fender,Upper handie cover,Medification front cover,Front protector cover,Down cover,Side cover cap,Lnner box fairing
Motorcycle accessory Handle grips,Nuts,Glooves

 
More available parts for: Motorcycle,Atv,Pocket bike,Dirtbike etc

HONDA CG125 CG150 CG200 GY650( 125 150) C70 C90 C100 C110 CUB90 WAVE100 WAVE110 WS110 WAVE125 CB125 CB150 SH125 SH150 TMX125 XRM125 WH125
YAMAHA 3KJ50 BWS MBK YB50 2JA JOG50 CRYPTON110 XC125 Y110 RX115 JY110 YBR125 MAJESTY250 CYGNUS X125 MIO NOUVO JUPITER-MX RXS115
SUZUKI GN125 GN150 AX100 GS125 AD50 AG50 HJ125 SMASH110
KAWASAKI BC175 KRISS BAJAJ-CT100 BAJAJ-CNG125
ITALIKA CS125, DS125, XS125/150, DS150, GS150, WS150, ST70, STRADA70, ST90, AT110, ARGENTA110, FT110/125/150, XT110, FORZA150
BAJAJ BOXER CT100, PULSAR135/150/180/200, DISCOVER125/135, PLATINO100/125

About TTP:
TTP POWER DEVELOPMENT(HangZhou) CO.,LTD was founded in 2001s,which is responsible for the work related to assembly factories,repair shops and after-sales services. We mainly engaged in high-quality motorcycle spare parts exportation. With outstanding brand LPI,RACING BEE,TTP exports large quantity every year to European countries,South American countries,Middle East countries and Southeast Asia countries,etc. We offer different genuine parts for different motorcycle models,motorcycle engine assembly,motorcycle engine parts,motorcycle body parts,motorcycle accessories,also parts for POCKET BIKE,ATV,SCCOTER. With very kinds of variety parts,our clients fond of making long term corporation replationship with us.
The products are in high quality,beautiful design and reasonable price,with support of innovating R&D,the company always focuses on quality of products and services for every important customer and makes it as its whole life purpose.

 

After-sales Service: One Year
Warranty: One Year
Type: Motorcycle Gear Shift Shaft
Start: Electric/Kick
Cylinder NO.: 1 Cylinder
Stroke: Four Stroke
Customization:
Available

|

Customized Request

gear shaft

What are the safety considerations when working with gear shafts?

Working with gear shafts involves potential hazards that need to be considered to ensure the safety of individuals involved. Proper safety measures should be followed to prevent accidents and injuries. Let’s explore some important safety considerations when working with gear shafts:

  • Personal Protective Equipment (PPE):

Wearing appropriate personal protective equipment is essential when working with gear shafts. This may include safety glasses or goggles to protect the eyes from flying debris, gloves to provide hand protection, and appropriate footwear to prevent foot injuries. PPE should be selected based on the specific hazards associated with the task.

  • Machine Guarding:

Ensure that gear shafts and related machinery are properly guarded. Machine guards help prevent accidental contact with moving parts and reduce the risk of entanglement or entrapment. Guards should be in place and functioning correctly before any work is performed on or near gear shafts.

  • Lockout/Tagout Procedures:

Prior to working on gear shafts, it is important to follow lockout/tagout procedures. These procedures involve isolating the machinery from its power source and ensuring that it cannot be energized accidentally. Lockout/tagout procedures help protect workers from unexpected startup or release of stored energy, minimizing the risk of injury.

  • Proper Training and Knowledge:

Workers should receive proper training on the safe operation and maintenance of gear shafts. They should be familiar with the potential hazards, safety procedures, and emergency protocols. Training should cover topics such as safe handling, proper use of tools, and awareness of potential risks associated with gear shafts.

  • Risk Assessment:

Conduct a thorough risk assessment before performing any work involving gear shafts. Identify potential hazards, assess the associated risks, and implement appropriate control measures. This may include evaluating the stability of the work area, assessing the need for additional support or lifting equipment, and identifying any potential pinch points or crush hazards.

  • Proper Lifting Techniques:

When handling or moving gear shafts, use proper lifting techniques to prevent strain or injury. Avoid lifting heavy loads manually when possible and use mechanical lifting aids or equipment when necessary. Ensure that lifting equipment is in good working condition, properly rated for the load, and operated by trained personnel.

  • Clean and Organized Work Area:

Maintain a clean and organized work area around gear shafts. Remove any unnecessary items or debris that could pose a tripping or slipping hazard. Keep tools and equipment properly stored when not in use to prevent accidents and injuries.

  • Regular Maintenance and Inspection:

Perform regular maintenance and inspection of gear shafts to ensure their safe operation. Check for signs of wear, damage, or misalignment. Address any issues promptly and follow manufacturer’s guidelines for maintenance intervals and procedures. Regular inspections help identify potential safety concerns and prevent equipment failure.

  • Communication and Collaboration:

Encourage effective communication and collaboration among team members when working with gear shafts. Clear communication ensures that everyone is aware of their roles and responsibilities and can alert others to potential hazards or unsafe conditions. Collaboration promotes a safety culture and allows for the sharing of knowledge and best practices.

By considering these safety measures when working with gear shafts, the risk of accidents and injuries can be significantly reduced. It is important to prioritize safety and create a work environment where individuals are informed, trained, and equipped to work safely with gear shafts.

gear shaft

What are the factors to consider when designing gear shafts for specific applications?

Designing gear shafts for specific applications requires careful consideration of various factors to ensure optimal performance and reliability. Let’s explore the key factors that should be taken into account during the design process:

  • Load and Torque Requirements:

The load and torque requirements of the specific application are crucial considerations. Understanding the maximum load the gear shaft will experience and the torque it needs to transmit is essential for selecting appropriate materials, determining the required dimensions, and ensuring the gear shaft can handle the anticipated forces effectively.

  • Gear Type and Configuration:

The gear type and configuration directly influence the design of the gear shaft. Different gear types, such as spur gears, helical gears, bevel gears, or worm gears, have unique characteristics that impact the design considerations for the gear shaft. Factors such as gear tooth profile, pitch, pressure angle, and gear ratio need to be taken into account during the design process to ensure proper alignment, engagement, and efficient power transmission.

  • Material Selection:

Selecting the appropriate material for the gear shaft is crucial for its strength, durability, and performance. Factors such as the required strength, wear resistance, fatigue resistance, and corrosion resistance should be considered when choosing the material. Common materials for gear shafts include various steels, alloys, and sometimes specialized materials like bronze or brass, depending on the specific application requirements.

  • Shaft Dimensions and Geometry:

The dimensions and geometry of the gear shaft need to be carefully determined. Factors such as shaft diameter, length, keyways, chamfers, and fillets are important considerations. Proper shaft dimensions and geometry ensure sufficient strength, proper fit within the gear assembly, and compatibility with other components within the system.

  • Bearing Support and Lubrication:

The gear shaft design should incorporate provisions for bearing support and lubrication. Bearings placed along the gear shaft help reduce friction, support the shaft under load, and ensure smooth rotation. Adequate lubrication, such as oil or grease, is necessary to minimize wear between the gear shaft and bearings, as well as to reduce heat generation and promote efficient operation.

  • Heat Treatment and Surface Finish:

Depending on the application requirements, heat treatment processes like quenching and tempering may be applied to enhance the mechanical properties of the gear shaft. Heat treatment can improve hardness, strength, and toughness, increasing the gear shaft’s ability to withstand high loads and resist wear. Additionally, considering the surface finish of the gear shaft can help reduce friction, improve gear meshing, and minimize the risk of surface damage.

  • Manufacturability and Cost:

Designing gear shafts should also take into account manufacturability and cost considerations. The design should be feasible for manufacturing processes such as machining, forging, or casting, depending on the chosen material and complexity of the design. The design should also aim to optimize material usage and minimize manufacturing costs while meeting the required performance criteria.

In summary, when designing gear shafts for specific applications, factors such as load and torque requirements, gear type and configuration, material selection, shaft dimensions and geometry, bearing support and lubrication, heat treatment and surface finish, as well as manufacturability and cost considerations, should all be carefully evaluated. By considering these factors, a well-designed gear shaft can be developed to meet the specific needs of the application, ensuring reliable and efficient power transmission within the gear system.

gear shaft

How does a gear shaft contribute to torque transmission and rotation?

A gear shaft plays a significant role in torque transmission and rotational motion within mechanical systems. It serves as the intermediary component that enables the transfer of torque between gears, allowing for the generation of rotational force and motion. Here’s a detailed explanation of how a gear shaft contributes to torque transmission and rotation:

  • Torque Transmission:

A gear shaft facilitates torque transmission by connecting and engaging gears within a mechanical system. Torque is the rotational force that causes an object to rotate. When torque is applied to the gear shaft, it transfers this rotational force to the connected gears. The gears mesh with each other, and the teeth on the gears transmit the torque from the driving gear to the driven gear through the gear shaft. This torque transmission allows the rotational force to be transferred and amplified or reduced as required, enabling the machinery to generate the necessary force to perform tasks.

  • Rotational Motion Transfer:

In addition to torque transmission, a gear shaft contributes to the transfer of rotational motion between gears. When one gear rotates, it meshes with another gear connected to the gear shaft. The teeth on the gears engage with each other, creating a mechanical linkage. As the driving gear rotates, it imparts its rotational motion to the gear shaft, which, in turn, transfers this motion to the driven gear. The rotational motion is transmitted through the gear shaft, allowing for the synchronized movement of various components within the mechanical system.

  • Mechanical Advantage:

One of the key contributions of a gear shaft to torque transmission is the ability to provide mechanical advantage. Mechanical advantage refers to the amplification or reduction of force and torque through the use of different gear sizes or gear ratios. By connecting gears with varying numbers of teeth on the gear shaft, the gear ratio can be adjusted. Gears with more teeth provide a higher gear ratio, resulting in increased torque output but reduced rotational speed. Conversely, gears with fewer teeth offer a lower gear ratio, resulting in reduced torque output but increased rotational speed. The gear shaft enables the selection of the appropriate gear ratio to match the desired torque and speed requirements of the mechanical system.

  • Torque Distribution:

A gear shaft also contributes to the distribution of torque within a mechanical system. As torque is transmitted through the gear shaft, it ensures that the force is evenly distributed across the teeth of the connected gears. This torque distribution minimizes stress concentration on individual gear teeth, promoting smooth operation and preventing premature wear or failure. The gear shaft acts as a conduit, allowing torque to flow efficiently and uniformly, ensuring reliable torque transmission and rotation.

In summary, a gear shaft plays a crucial role in torque transmission and rotation within mechanical systems. It enables the transfer of torque between gears, facilitates the transfer of rotational motion, provides mechanical advantage for torque amplification or reduction, and ensures uniform torque distribution. Gear shafts are essential components that contribute to the efficient and effective operation of machinery and mechanical systems.

China Professional Various Models Motorbike Parts, Motorcycle Gear Shift Shaft, Shifting Shaft hypoid bevel gearChina Professional Various Models Motorbike Parts, Motorcycle Gear Shift Shaft, Shifting Shaft hypoid bevel gear
editor by CX 2023-09-23