China Hot selling Slewing Drive Worm Gear for Solar Dish gear patrol

Product Description

Coresun Drive slewing drive worm gear for satellite antenna and satellite PV CPV solar tracking system
 

Model

SC3

Place of Origin

HangZhou,China

Brand

Coresun Drive

Load Weight

50-200kg

IP Class

IP65

Output Torque

760N.m

Tilting Moment Torque

1.1kN.m

Holding Torque

2.2kN.m

Precision

0.17°

Rated current

≤2.9A 

Gear Ratio

62:1

Efficiency

40%

SC3 Slewing Drive Worm Gear Mechanism Characteristics:

High Tilting Moment Torque
Tilting moment torque is the moment to guide a self-propelled mechanical overturning.Working load (lifting load in the crane) or partial load outside the tilting line, relative torque formed by the tilting line.

High Holding Torque
Holding torque is typically higher than running torque, and is limited primarily by the maximum current the motor can withstand. From a practical standpoint, holding torque is the sum of the magnetic force exerted by the coils to hold the motor’s current position, plus the detent torque.

High Output Torque
Divide the diameter of the output gear by the diameter of the input gear. Multiply the torque of the motor by the gear ratio to get the output torque. For example, a motor that puts out 10 lb.-feet of torque used with a gear reducer with a 10:1 gear ratio will give you 100 lb.-feet of torque at the output gear.
 

High Protection Grade
IP65, IP66 waterproof and dustproof performance for outdoor using condition
 

1, What are the differentiates between CHINAMFG with other supplier?     

Profession and reliability.

     Our advantages are multiple available technologies, strong quality assurance, and good at project & supply chain management.

 

2, Is there a cost for CHINAMFG service?

   There is no additional cost above the product and tooling price except third party service.

 

3, Will I be able to visit the supplier myself?

    First, all of our supply partner has undergone a series of screening and audit process, we can provide complete audit report to you.

    Secondly, if you want to perform your own independent supplier audit procedure, our representatives can accompany and assistant with you to achieve it.

 

4, How to deal with the quality problem?

    A. With our partners we perfom APQP at early stage in each project.

    B. Our factory must fully understand the quality concerns from customers and implement product & process quality requirements.

    C. Our quality professionals who perfom patrol inspection in our factories.

         We perform final inspectors before the goods are packed.

    D. We have 3rd party inspectors who perform final audit checks on the packed goods prior to dispatch from China.

 

5, Can you take responsibility for me?

    Of course, I’m happy to help you! But I just take responsitility fo my products.

Please offer a test report.

    If it was our fault, absolutely we can make a compensation for you, my friend!

 

6, Do you like to serve the client only with small order?

    We enjoy to grow up together with all our clients whatever big or small.

    Your will become bigger and bigger to be with us.

Production Photo and Application

CHINAMFG Drive processes the metallographic analysis to ensure the quality of parts- worm shaft, slewing gear,slewing bearing and 100% finished product inspection.

slewing drive worm gear with 24VDC 12VDC motor is certificated by CE

CONTACT US

It is sincerely looking CHINAMFG to cooperating with you for and providing you the best quality product & service with all of our heart!

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Holding Torque: 2.2kn, M
Tilting Moment Torque: 1.1kn.M
Output Speed: 0.048rpm
Output Torque: 760n.M
Delivery Time: 7 Days
Weight: 12kg
Customization:
Available

|

Customized Request

worm gear

How do you maintain and service a worm gear?

Maintaining and servicing a worm gear is essential to ensure its optimal performance, reliability, and longevity. Regular maintenance helps identify and address potential issues before they escalate, minimizes wear, and extends the lifespan of the gear system. Here are some key steps involved in maintaining and servicing a worm gear:

  • Inspection: Conduct routine visual inspections of the worm gear system to check for any signs of wear, damage, or misalignment. Inspect the gear teeth, bearings, housings, and lubrication system. Look for indications of excessive wear, pitting, chipping, or abnormal noise during operation.
  • Lubrication: Ensure that the worm gear system is properly lubricated according to the manufacturer’s recommendations. Regularly check the lubricant levels, cleanliness, and viscosity. Monitor and maintain the lubrication system, including oil reservoirs, filters, and seals. Replace the lubricant at recommended intervals or if it becomes contaminated or degraded.
  • Tighten fasteners: Over time, vibrations and operational forces can cause fasteners to loosen. Regularly check and tighten any bolts, screws, or clamps associated with the worm gear system. Be cautious not to overtighten, as it may lead to distortion or damage to the gear components.
  • Alignment: Check the alignment of the worm gear system periodically. Misalignment can cause excessive wear, increased friction, and reduced efficiency. Adjust and realign the gears if necessary to ensure proper meshing and minimize backlash.
  • Cleaning: Keep the worm gear system clean and free from debris, dirt, or contaminants. Regularly remove any accumulated dirt or particles that may affect the gear performance. Use appropriate cleaning methods and solvents that are compatible with the gear materials.
  • Load monitoring: Monitor the load conditions of the worm gear system. Ensure that the gear is not operating beyond its rated capacity or encountering excessive shock loads. If needed, consider implementing load monitoring devices or systems to prevent overloading and protect the gear system.
  • Periodic inspection and testing: Schedule periodic comprehensive inspections and functional testing of the worm gear system. This may involve disassembling components, checking for wear, measuring gear backlash, and evaluating overall performance. Identify and address any issues promptly to prevent further damage or failure.
  • Professional servicing: For complex or critical applications, it may be beneficial to involve a professional service provider or gear specialist for more extensive maintenance or repairs. They can offer expertise in diagnosing issues, performing advanced inspections, and conducting specialized repairs or replacements.

It’s important to follow the manufacturer’s recommendations and guidelines for maintaining and servicing the specific worm gear system. Adhering to proper maintenance practices helps ensure the gear’s optimal performance, reduces the risk of unexpected failures, and maximizes its operational lifespan.

worm gear

How do you ensure proper alignment when connecting a worm gear?

Ensuring proper alignment when connecting a worm gear is crucial for the smooth and efficient operation of the gear system. Here’s a detailed explanation of the steps involved in achieving proper alignment:

  1. Pre-alignment preparation: Before connecting the worm gear, it is essential to prepare the components for alignment. This includes cleaning the mating surfaces of the gear and shaft, removing any debris or contaminants, and inspecting for any signs of damage or wear that could affect the alignment process.
  2. Measurement and analysis: Accurate measurement and analysis of the gear and shaft alignment are essential for achieving proper alignment. This typically involves using precision alignment tools such as dial indicators, laser alignment systems, or optical alignment instruments. These tools help measure the relative positions and angles of the gear and shaft and identify any misalignment.
  3. Adjustment of mounting surfaces: Based on the measurement results, adjustments may be required to align the mounting surfaces of the gear and shaft. This can involve shimming or machining the mounting surfaces to achieve the desired alignment. Care should be taken to ensure that the adjustments are made evenly and symmetrically to maintain the integrity of the gear system.
  4. Alignment correction: Once the mounting surfaces are prepared, the gear and shaft can be connected. During this process, it is important to carefully align the gear and shaft to minimize misalignment. This can be done by observing the alignment readings and making incremental adjustments as necessary. The specific adjustment method may vary depending on the type of coupling used to connect the gear and shaft (e.g., keyway, spline, or flange coupling).
  5. Verification and final adjustment: After connecting the gear and shaft, it is crucial to verify the alignment once again. This involves re-measuring the alignment using the alignment tools to ensure that the desired alignment specifications have been achieved. If any deviations are detected, final adjustments can be made to fine-tune the alignment until the desired readings are obtained.
  6. Secure fastening: Once the proper alignment is achieved, the gear and shaft should be securely fastened using appropriate fasteners and tightening procedures. It is important to follow the manufacturer’s recommendations for torque values and tightening sequences to ensure proper clamping force and prevent any loosening or slippage.

It is worth noting that the alignment process may vary depending on the specific gear system, coupling type, and alignment tools available. Additionally, it is important to refer to the manufacturer’s guidelines and specifications for the particular gear and coupling being used, as they may provide specific instructions or requirements for alignment.

Proper alignment should not be considered a one-time task but an ongoing maintenance practice. Regular inspections and realignment checks should be performed periodically or whenever there are indications of misalignment, such as abnormal noise, vibration, or accelerated wear. By ensuring proper alignment during the initial connection and maintaining it throughout the gear’s operational life, the gear system can operate optimally, minimize wear, and extend its service life.

worm gear

What is the purpose of a self-locking feature in a worm gear?

A self-locking feature in a worm gear serves the purpose of preventing reverse motion or backdriving of the gear system. When a worm gear is self-locking, it means that the worm can rotate the worm wheel, but the reverse action is hindered or restricted, providing a mechanical holding or braking capability. This self-locking feature offers several advantages and is utilized in various applications. Here are the key purposes of the self-locking feature:

  • Mechanical Holding: The self-locking capability of a worm gear allows it to hold a specific position or prevent unintended movement when the worm is not actively driving the system. This is particularly useful in applications where it is necessary to maintain a fixed position or prevent the gear from rotating due to external forces or vibrations. Examples include elevators, lifts, and positioning systems.
  • Backdriving Prevention: The self-locking feature prevents the worm wheel from driving the worm in the reverse direction. This is advantageous in applications where it is crucial to prevent a load or external force from causing the gear to rotate backward. For instance, in a lifting mechanism, the self-locking feature ensures that the load remains suspended without requiring continuous power input.
  • Enhanced Safety: The self-locking property of a worm gear contributes to safety in certain applications. By preventing unintended or undesired motion, it helps maintain stability and reduces the risk of accidents or uncontrolled movement. This is particularly important in scenarios where human safety or the integrity of the system is at stake, such as in heavy machinery or critical infrastructure.

It’s important to note that not all worm gears are self-locking. The self-locking characteristic depends on the design parameters, specifically the helix angle of the worm’s thread. A higher helix angle increases the self-locking tendency, while a lower helix angle reduces or eliminates the self-locking effect. Therefore, when selecting a worm gear for an application that requires the self-locking feature, it is essential to consider the specific design parameters and ensure that the gear meets the necessary requirements.

China Hot selling Slewing Drive Worm Gear for Solar Dish gear patrolChina Hot selling Slewing Drive Worm Gear for Solar Dish gear patrol
editor by CX 2024-04-15